直流電動機以其優良的轉矩特性在運動控制領域得到了廣泛的應用,但普通的直流電動機由于需要機械換相和電刷,可靠性差,需要經常維護;換相時產生電磁干擾,噪聲大,影響了直流電動機在控制系統中的進一步應用。為了克服機械換相帶來的缺點,以電子換相取代機械換相的無刷電機應運而生。1955年美國D.Harrison等人首次申請了用晶體管換相電路代替機械電刷的專利,標志著現代無刷電動機的誕生。而電子換相的無刷直流電動機真正進入實用階段,是在1978年的MAC經典無刷直流電動機及其驅動器的推出。之后,國際上對無刷直流電動機進行了深入的研究,先后研制成方波無刷電機和正弦波直流無刷電機。20多年以來,隨著永磁新材料、微電子技術、自動控制技術以及電力電子技術特別是大功率開關器件的發展,無刷電動機得到了長足的發展。無刷直流電動機已經不是專指具有電子換相的直流電機,而是泛指具有有刷直流電動機外部特性的電子換相電機。
無刷直流電動機不僅保持了傳統直流電動機良好的動、靜態調速特性,且結構簡單、運行可靠、易于控制。其應用從最初的軍事工業,向航空航天、醫療、信息、家電以及工業自動化領域迅速發展。
在結構上,與有刷直流電動機不同,無刷直流電動機的定子繞組作為電樞,勵磁繞組由永磁材料所取代。按照流入電樞繞組的電流波形的不同,直流無刷電動機可分為方波直流電動機(BLDCM)和正弦波直流電動機(PMSM),BLDCM用電子換相取代了原直流電動機的機械換相,由永磁材料做轉子,省去了電刷;而PMSM則是用永磁材料取代同步電動機轉子中的勵磁繞組,省去了勵磁繞組、滑環和電刷。在相同的條件下,驅動電路要獲得方波比較容易,且控制簡單,因而BLDCM的應用較PMSM要廣泛的多。
直流無刷電動機一般由電子換相電路、轉子位置檢測電路和電動機本體三部分組成,電子換相電路一般由控制部分和驅動部分組成,而對轉子位置的檢測一般用位置傳感器來完成。工作時,控制器根據位置傳感器測得的電機轉子位置有序的觸發驅動電路中的各個功率管,進行有序換流,以驅動直流電動機。本文從無刷電動機的三個部分對其發展進行分析。
2 各組成部分發展狀況
2.1 電動機本體
無刷直流電動機在電磁結構上和有刷直流電動機基本一樣,但它的電樞繞組放在定子上,轉子采用的重量、簡化了結構、提高了性能,使其可靠性得以提高。無刷電動機的發展與永磁材料的發展是分不開的,磁性材料的發展過程基本上經歷了以下幾個發展階段:鋁鎳鈷,鐵氧體磁性材料,釹鐵硼(NdFeB)。釹鐵硼有高磁能積,它的出現引起了磁性材料的一場革命。第三代釹鐵硼永磁材料的應用,進一步減少了電機的用銅量,促使無刷電機向高效率、小型化、節能的方向發展。
目前,為提高電動機的功率密度,出現了橫向磁場永磁電機,其定子齒槽與電樞線圈在空間位置上相互垂直,電機中的主磁通沿電機軸向流通,這種結構提高了氣隙磁密,能夠提供比傳統電機大得多的輸出轉矩。該類型電機正處于研究開發階段。
2.2 電子換相電路
控制電路:無刷直流電動機通過控制驅動電路中的功率開關器件,來控制電機的轉速、轉向、轉矩以及保護電機,包括過流、過壓、過熱等保護。控制電路最初采用模擬電路,控制比較簡單。如果將電路數字化,許多硬件工作可以直接由軟件完成,可以減少硬件電路,提高其可靠性,同時可以提高控制電路抗干擾的能力,因而控制電路由模擬電路發展到數字電路
目前,控制電路一般有專用集成電路、微處理器和數字信號處理器等三種組成形式。對電機控制要求不高的場合,由專業集成電路組成控制電路是簡單實用的方法;由于數字信號處理器運算快,外圍電路少,系統組成簡單、可靠,使得直流無刷電動機的組成大為簡化,性能大大改進,有利于電機的小型化和智能化,因而數字信號處理器是控制電路發展的方向。
驅動電路:驅動電路輸出電功率,驅動電動機的電樞繞組,并受控于控制電路。驅動電路由大功率開關器件組成。正是