1 引言
無刷同步電動機由于沒有滑環、碳刷等可能產生火花的環節,在化工、煤礦等具有爆炸性環境的場所有著較為廣泛的應用。此外,由于去掉了碳刷等易損元件,大大提高了電機的整體可靠性,在一些要求持續長時間高可靠性運行的場合也有著不少的應用。近年來隨著節能觀念的轉變,大量的無刷同步電動機將面臨變頻改造。
由于無刷同步電動機固有的技術特點,在變頻調速運行時,同步電機遇到的弱磁投勵、電機逆相運行、變頻器-勵磁器協同控制等問題,一直制約著無刷同步電動機的變頻應用。
本文基于無刷同步電動機的結構和原理,對無刷同步電動機在變頻運行中所遇到的各種問題進行了詳細的分析,并根據理論分析和仿真試驗的結果對這些問題提出適當解決方法,使變頻器能夠驅動無刷同步電動機可靠、經濟地調速運行。
2 無刷同步電動機的結構與工頻運行過程
2.1 無刷同步電動機的結構
無刷同步電動機的結構如圖1所示。
 圖1 無刷同步電動機結構 圖中:1為滑動軸承,2為無刷同步電動機繞組,3為冷卻器,4為旋轉整流器,5為勵磁發電機。
2.2 無刷同步電動機勵磁系統結構
無刷同步電動機勵磁系統結構如圖2所示,其中勵磁發電機與同步電動機同軸轉動。
 圖2 無刷同步電動機勵磁系統結構 其中,旋轉整流器負責電機起動過程滅磁與投勵邏輯,其內部結構如圖3所示。電機起動時,旋轉整流器控制滅磁晶閘管t4將滅磁電阻rf連接至無刷同步電動機的轉子勵磁繞組上,以提供較大的起動轉矩,降低勵磁繞組端電壓,此時整流晶閘管t1 ~ t3截止;當電機到達亞同步速且滿足準角條件時,控制器觸發整流晶閘管t1 ~ t3,將勵磁發電機的電樞電壓整流后加在同步電動機的勵磁繞組上,為同步電動機提供持續的勵磁電流,同時關斷滅磁晶閘管t4。此時,旋轉整流器等效于三相二極管不控整流器。
2.3 無刷同步電動機的工頻穩態運行
無刷同步電動機在工頻穩態運行時,勵磁器向勵磁發電機的定子勵磁繞組通以適當的勵磁電流,在勵磁發電機的轉子電樞繞組端部感應出三相交流電壓,由旋轉整流器(等效于二極管整流器)整流成直流電壓,施加在無刷同步電動機的轉子勵磁繞組上,為其提供持續的勵磁電流。
根據勵磁發電機的物理特性,其輸出的電樞電壓近似于電機轉速和勵磁發電機勵磁電流的乘積成正比,因此勵磁器可以通過調節晶閘管的觸發角,調節勵磁發電機的定子勵磁電流,達到調節無刷同步電動機的轉子勵磁電流的目的。
2.4 無刷同步電動機的工頻起動投勵過程
無刷同步電動機的工頻起動投勵過程如圖4所示。
 圖3 旋轉整流器結構
 圖4 無刷同步電動機工頻起動過程
工頻起動時,首先高壓斷路器合閘,旋轉整流器的滅磁部分電路根據同步電動機勵磁繞組上的感應電壓將滅磁電阻連接至同步電動機的勵磁繞組上,同步電動機逐漸加速。
高壓斷路器合閘后,勵磁器觸發晶閘管,向勵磁發電機的定子勵磁繞組通以一定的勵磁電流。隨著電機轉速的升高,勵磁發電機的轉子電樞繞組電壓逐漸升高,當其高于旋轉整流器的****工作電壓后,由其供電的旋轉整流器控制器上電,旋轉整流器監測同步電動機勵磁繞組上的感應電壓,當其周期大于預設值(表示同步電動機已到達亞同步速)且到達反向過零點時,觸發整流晶閘管,關斷滅磁晶閘管,將勵磁發電機的轉子電樞電壓整流后加在同步電動機的勵磁繞組上,完成投勵。 電機經過短暫的整步過程后進入穩定的同步運行狀態,電機起動過程完成。
2.5 無刷同步電動機的工頻停機過程
工頻停機時,斷開高壓斷路器,同時勵磁器調節晶閘管的觸發角至有源逆變區,將勵磁發電機的定子勵磁電流迅速降至零,勵磁發電機的轉子電樞繞組電壓迅速下降,當其小于旋轉整流器的****工作電壓時,旋轉整流器控制電掉電,其整流晶閘管截止,續流二極管將滅磁電阻連接至同步電動機的勵磁繞組上,同步電動機的勵磁電流迅速下降至零。同步電動機在負載和阻力轉矩等的作用下逐漸停穩。
3 無刷同步電機的變頻運行
3.1 調速運行時的勵磁發電機特性
與有刷同步電動機的滑環直接勵磁不同,無刷同步電動機的 |